本日7月9日を709と3ケタの数で表すと、709は素数です。西暦を含めた20180709は32×101×1492と素因数分解できるので、素数ではありません。
今回は、数学ST(ステーション)入口に掲示している「オイラー」のパネルと説明文をご紹介します。数学STは数学科教員室のことです。
レオンハルト・オイラー(1707-1783)は、パネルにも書いたように、たいへん多くの業績を残した数学者です。今回は、彼の功績の中から、1つだけ紹介します。
値は、約1.644934だとわかっていたのですが、円周率πが分数の計算の答えに含まれているなんてとても不思議な感じがしませんか。
現在、この式は「リーマンゼータ関数」(正確には、ゼータ関数のs=2の場合)と呼ばれています。ゼータ関数の研究は、証明されると100万ドルの賞金がもらえるミレニアム問題の1つ「リーマン予想」の解決につながると言われています。
今回は、聞いたことのない用語がいくつも出てきたかもしれません。ブログを読んでくださった皆さんの中から、ゼータ関数を研究してリーマン予想にチャレンジする方が出てくることを期待しています。
(数学科 園田)
Leonhard Euler(1707-1783)was a pioneering Swiss mathematician and physicist. He was born in Basel Switzerland. He worked at the Russian Academy of Sciences and Prussia Academy of Sciences. He was the first person who used“y=f(x)”as a function. He wrote more than 800 papers after he lost his sight in 1766. In 1736, Euler presented a solution to the problem known as the Seven Bridges of Koenigsberg. There are many theories he discovered like“Euler’s polyhedron formula”. Especially “Euler’s identity eiπ+1=0” is most well-known. It is introduced in “Hakase no aishita suushiki”, a Japanese popular novel.
“The name of the math staff room is ‘Euler’.”
We will introduce the panel of “Leonhard Euler” and a document to explain the panel this time.
Leonhard Euler (1707 – 1783) was a mathematician who had many achievements. We will introduce one episode about him.
Euler had a solution to the problem “the sum of all reciprocal numbers of square
This problem was called the “Basel Problem“ at that time. The sum of the series approximately equal to 1.644934. It may be mysterious that the solution of sum of fractions contained pi.
We call this equation “The Riemann zeta function or Euler-Riemann zeta function” now. Exactly it is the case that “s=2” in the Riemann zeta function.
Research of the Riemann zeta function will solve “Riemann hypothesis” that is one of the Millennium Prize Problems. A person who can solve this Millennium Prize Problems get a prize of one million US dollars.
You might see the many words you have never heard this time. I expect that someone who read this blog might research the Riemann zeta function and challenge to solve the Riemann hypothesis.
by Tsuyoshi Sonoda (Math Dept.)